Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A barium perchlorate complex with a lateral macrobicycle derived from 1,10-diaza-15-crown-5 containing a phenol Schiff base spacer

Fernando Avecilla, David Esteban, Carlos Platas-Iglesias, Andres De Blas and Teresa Rodríguez-Blas*

Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
Correspondence e-mail: mayter@udc.es

Received 11 December 2002
Accepted 3 February 2003
Online 28 February 2003
In the crystal structure of (acetonitrile- κN) [13-methyl-39-oxido-1,17,25-triaza-9-azonia-28,31,36-trioxapentacyclo[23.8.$\left.5.1^{11,15} .0^{3,8} .0^{18,23}\right]$ nonatriaconta-3,5,7,9,11, 13,15(39), 16, 18,20,-22-undecaene- $\left.\kappa^{7} N^{1}, N^{17}, N^{25}, O^{28}, O^{31}, O^{36}, O^{39}\right]$ (perchlorato- κ^{2} $\left.O, O^{\prime}\right)$ barium(II) perchlorate acetonitrile hemisolvate, [Ba$\left.\left(\mathrm{ClO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$, the barium(II) cation is asymmetrically situated in the macrobicyclic cavity and is bound to seven of the eight heteroatoms of the macrobicyclic ligand, to the N atom of an acetonitrile molecule and to two O atoms of one perchlorate group. The azonia N atom is not coordinated to the barium(II) cation and is involved in an intramolecular hydrogen-bonding interaction with the oxido O atom.

Comment

In a previous work (Esteban et al., 1999), we reported a novel family of Schiff base lateral macrobicycles that contain two different binding units, viz. a rigid and unsaturated $\mathrm{N}_{2} X$ set, ($X=\mathrm{N}$ and O) and a flexible and cyclic $\mathrm{N}_{2} \mathrm{O}_{n}$ set linked by aromatic bridges. These macrobicycles, which are the first examples of lateral macrobicycles containing imine groups, are structurally derived from bibracchial lariat ethers that incorporate pendant aniline moieties. We have found that the macrobicycles cannot be prepared by a direct reaction between the organic precursors, but barium can act as a template, thereby facilitating the formation of the desired macrobicycles in high yields. In all cases, the barium(II) ion acts as a permanent template, remaining trapped in the macrobicyclic cavity. We describe herein the X-ray crystal structure determination of one of these barium complexes, $\left[\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)(L)\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$, (I), where L is the macrobicycle formed by condensation of the bibracchial lariat ether N, N^{\prime}-bis(2 -aminobenzyl)-1,10-diaza-15-crown-5 and 2,6-diformyl-4-methylphenol.

The asymmetric unit of (I) contains the $\left[\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)(L)\right]^{+}$cation, a well separated perchlorate anion and half a molecule of acetonitrile. Fig. 1 shows the structure of the cationic complex, while selected bond lengths and angles are given in Table 1. The barium(II) ion is bound to seven of the eight heteroatoms of L, to the N atom of an acetonitrile molecule and to two O atoms of one perchlorate group. The X-ray data suggest that imine atom N 1 and phenol donor O 4 are involved in an intramolecular hydrogen-bonding interaction (Table 2). The relevant distances ($\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}=0.97 \AA$ and $\mathrm{O} 4 \cdots \mathrm{H} 1 \mathrm{~N}=1.72 \AA$) also indicate that proton transfer from the phenol group to imine atom N1 has occurred, as previously found in related complexes (Esteban et al., 2002). As a result, N1 does not belong to the coordination sphere of the barium(II) ion, which consequently is situated asymmetrically in the macrobicyclic cavity. All the barium-donor atom distances fall within the range found in the literature.

(I)

The torsion angles $\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1\left[5.8(6)^{\circ}\right]$ and $\mathrm{N} 1-$ $\mathrm{C} 32-\mathrm{C} 2-\mathrm{C} 1\left[-0.7(6)^{\circ}\right]$ indicate that the coordinated imine group is just slightly rotated from coplanarity with the phenol

Figure 1
A view of the $\left[\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)(L)\right]^{+}$cation, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.
ring, whereas the uncoordinated imine group is rigorously coplanar with the phenol ring. The phenol ring forms a dihedral angle of $67.43(11)^{\circ}$ with the plane containing the benzyl ring attached to the coordinated imine atom N 2 and an angle of $32.31(20)^{\circ}$ with the plane containing the second aromatic ring. This difference in the fold of the receptor may be due to the coordination of the barium(II) ion, which, in order to maximize the interaction with the seven coordinated heteroatoms of the macrobicycle, forces the torsion and fold of this part of the receptor, so diminishing the degree of π conjugation and increasing the stress on this side of the receptor. In addition, donor atoms $\mathrm{O} 1, \mathrm{O} 3, \mathrm{~N} 3$ and N 4 of the crown moiety are essentially coplanar (the mean deviation from the plane is $0.0044 \AA$), with the barium ion lying 1.5018 (18) A above the plane.

The distance between the two imine N atoms (N 1 and N 2) is 5.376 (4) \AA, which is $0.37 \AA$ longer than the distance found in the analogous perchlorate complex in which the macrobicyclic receptor contains a pyridine Schiff base spacer (Esteban et al., 1999). The distance between the two pivotal N atoms (N3 and N4) is 5.169 (4) \AA, which is $0.22 \AA$ shorter than the distance found in the analogous complex containing the pyridine spacer.

Experimental

Single crystals of $\left[\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)(L)\right] \mathrm{ClO}_{4} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$ suitable for X-ray crystallographic analysis were grown by slow diffusion of diethyl ether into an acetonitrile solution of the previously reported complex $\left[\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{EtOH})(\mathrm{L})\right]$ (Esteban et al., 1999).

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]-$ $\mathrm{ClO}_{4} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=954.51$
Triclinic, $P \overline{1}$
$a=9.5691$ (8) \AA
$b=14.8261(13) \AA$
$c=15.7110(13) \AA$
$\alpha=101.726(2)^{\circ}$
$\beta=101.994$ (2) ${ }^{\circ}$
$\gamma=91.566$ (2) ${ }^{\circ}$
$V=2129.2(3) \AA^{3}$

Data collection

Bruker SMART CCD diffractometer
$\varphi-\omega$ scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.577, T_{\text {max }}=0.662$
14862 measured reflections
10257 independent reflections

Refinement

Refinement on F^{2}
$Z=2$
$D_{x}=1.489 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 14862
\quad reflections
$\theta=1.4-28.3^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, orange
$0.55 \times 0.40 \times 0.40 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.126$
$S=1.02$
10257 reflections
547 parameters

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ba} 1-\mathrm{O} 4$	$2.596(2)$	$\mathrm{Ba} 1-\mathrm{O} 6$	$2.928(3)$
$\mathrm{Ba} 1-\mathrm{O} 1$	$2.741(2)$	$\mathrm{Ba} 1-\mathrm{N} 1 S$	$2.963(4)$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.827(2)$	$\mathrm{Ba} 1-\mathrm{O} 8$	$2.980(4)$
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.838(3)$	$\mathrm{Ba} 1-\mathrm{N} 4$	$3.096(3)$
$\mathrm{Ba} 1-\mathrm{N} 2$	$2.884(3)$	$\mathrm{Ba} 1-\mathrm{N} 3$	$3.243(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{O} 4$	0.97	1.72	$2.556(4)$	142

Atoms $\mathrm{O} 9, \mathrm{O} 10$ and O 12 of one perchlorate group were disordered [site-occupancy factor of 0.52 (2) for $\mathrm{O} 9 A, \mathrm{O} 10 A$ and $012 A$], as were atoms C3S and $\mathrm{N} 2 S$ of an acetonitrile molecule [site-occupancy factor of 0.103 (13) for C3SA and $\mathrm{N} 2 S A$], and 93 restraints were imposed. The site O11 is occupied by two non-separable, but not completely coincident, disordered atoms. The refinement converged with anisotropic displacement parameters for all non-H atoms, except for C3SA, C3SB, C4S, $2 S A$ and $\mathrm{N} 2 S B$, which were refined isotropically. The positions of all H atoms, except H1N, were calculated geometrically, and a riding model was used in their refinement. Atom H1N, which is involved in an intramolecular hydrogen bond, was found in a difference electron-density map and then refined riding on atom N 1 . The H atoms of the solvent (non-coordinated acetonitrile) were not included. The minimum and maximum final electron-density peaks were 0.86 and $0.89 \AA$ from Ba1, respectively.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Xunta de Galicia (PGIDT00MAM10302R) for generous financial support and Dr J. Mahía (SXAIN, Universidade da Coruña) for useful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1006). Services for accessing these data are described at the back of the journal.

References

Esteban, D., Avecilla, F., Platas-Iglesias, C., Mahía, J., De Blas, A. \& Rodríguez-Blas, T. (2002). Inorg. Chem. 41, 4337-4347.
Esteban, D., Bañobre, D., Bastida, R., De Blas, A., Macías, A., Rodríguez, A., Rodríguez-Blas, T., Fenton, D. E., Adams, H. \& Mahía, J. (1999). Inorg. Chem. 38, 1937-1944.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

